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E F F E C T  OF V I S C O S I T Y  O N  T H E  W A V E P R O C E S S  

I N  A N O N U N I F O R M  F L O W  W I T H  A C R I T I C A L  L E V E L  

V.  A.  P a v l o v  UDC 532.592; 551.537 

A continuous analytical representation of an acoustic-gravitational field in a medium with a 
nonuni form flow in the presence of a critical layer is constructed. It is shown that taking into 
account the effect of viscosity eliminates singular values of  the field. 

A nonuniform flow (wind) forms a specific spatial s t ructure  of acoustic-gravitational waves [1-3]. In 
particular, a region with the so-called critical level can be formed. In the linear approximation without 
allowance for dissipation, both the velocity and density of the medium at this level turn to infinity. The 
energy of a per tu rbed  field in an infinitely thin layer also becomes infinite. In this situation, a modification 
of the model adopted is required. One possible approach to "elimination" of infinities is based on making an 
allowance for dissipation. This approach raises the order of the system of equations and, as a result, there 

arises a "singularly perturbed problem" [4]. Weak dissipation brings about a small parameter, a coefficient 
at the higher derivative. This work is devoted to an analytical s tudy of the spatial structure of an acoustic- 
gravitational wave under tile above conditions. 

The  wave process is described by the following linear system of gas-dynamic equations taking into 
account weak dissipation: 

dp ,iv ( ' q ) . ,  
d'~ + po(z)divv '  -- O, po(z) - ~  = ~TP' - p'gez + qAv '  + i + 5 ~7dlvv, 

d P  dp (1) 
dt a 2 -~  = O, P = Po(z) + P', p = po(z) + p', v = vo(z)ez + v'. 

Here and below p, P ,  and v are the density, pressure, and velocity, ~ and ~ are the viscosities (assumed 
constant),  g is the acceleration of gravity; x and z are tile Cartesian coordinates; t is the time, a0 = 
(TpoPo I )1/2 is the velocity of sound, and ")' is the ratio of specific heats. The subscript 0 and the prime refer 
to the parameters  of the medium in an unperturbed state and to their perturbations, respectively. 

The  unper turbed  state of the medium at 77 # 0 is described by the relations 

Po(z) = P0(0) exp ( - z H - 1 ) ,  po(z) = p0(0) exp ( - z H  - t ) ,  H = a~g-l~ -1, 

v0(z) = w 0 z o ' ( z  - z0), z l  = Z0Wo'(W0 + 

We s tudy a two-dimensional acoustic-gravitational wave excited by a distribution of the vertical velocity 
of the medium at a level z = const in the form of a s tat ionary wave 

v~(t, x ) '= Vz(Z) exp ( - i ~ t  + ikx)  (2) 

that  propagates in the x direction with a velocity wk -1. Since the properties of the medium do not depend 
on the horizontal coordinate x, the per turbat ion in the x direction is also stationary. The total derivative 
d/dt  in (1) can be represented as 
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__dfdt = i kaos ( z ) f '  Jr v.~' df~ , 8(z) ~ a o I [ v o ( Z )  --  o2/~ - 1  ] : ( ~ 0 z l l  (Z - -  Zl)- 

We consider the case with boundary  condition (2) set at a certain level below q .  

With  allowance for viscosity (r I r 0 and ff r 0), we represent the system of equations (1) in the form 
f , I p l :  of four interrelated equations for v~, vz, p', and 

i d 1 I , =  v.];, 
ao8 

2 ,  [ . d ] ,  , iuls  d %: i d 1 swo + 'was ~z %; (4) 
vx 1 - s 2 + i~'2s dz ' ' ' T  = k(1 - s2 + iv2s) d~ ^/H aozo 

�9 , dP '  @4, -~ / -~ -~-z2 -nk  v .  4- rl~d'v" zka~176 - dz gp' 4. rl ~ d2v~ 2 ,_ @ 4, 5 /  dz  ; (5) 

dpo i k a o s ( f '  - a2p ') - v'. 7 - 1 a2 -~z  = 0. (6) 
7 

Here vn (n = 1, 2, and 3) are dimensionless small parameters,  vl --= rlkaolPo l, t,2 =-- (~ + 4rl/3)kaolPo 1, and 
= , , p ,  va -- (~ 4- r l /3)aolPo 1. For t,~ 0, the order  of system (3)-(6) is reduced, and the fields of vx, v., p', and 

can be expressed in terms of a function '~(z) that  satisfies the differential equation 

d2~ 
dz----g 4. D2(z)(I ) = O, (7) 

w 2 1 1 2 - 7 wo 3 'w~ 
D2(z)---- -L-1 - k 2 ( 1 - s 2 )  _ a ~ ( l _ s 2 ) 2  ~2, 

- a~s 2 4H 2 Haos(1 s 2) ? zo *0 

' ~ s 2 v: = -- exp ( z / ( 2 H ) ) ~ ( z )  exp (-io. ' t  Jr- ikx) ,  

, i , ,w0 , [ wo  0,1, 
"vx -- k( t  - s a) d-z "yH a--~o/'v:' k(1 - s 2) aos dz zo 7--HJ %'  

p , =  P0 [ s d 7 - 1 - 7 s  2 .s~,o ] , , ( 7 - 1 ) g  2 
ikaos 1 -  s dz + ? H ( 1  - s  2) a0(1 - s 2 ) z o  j v z '  wr = a'g 

For z --+ zt , we have s(z)  -+ O. Ignoring dissipation, we obtain the following estimates for the 
fields: P'  ~ " z ~ ( z - z 1 )  1-a and p' -~ . x ~ (z - z~) -a.  Here a - [ 1 + ( 1 - 4 R i ) 1 / 2 ] / 2  and Ri =- 

i p l  4((7 - 1 ) /7 ) (a2 /H2) ( z~ /w2) .  If 4Ri < 1, then v x --+ oo and ---+ c~, and for z ---+ zl, the conditions for 
linearization of the system of gas-dynamic equations are violated. The  layer in the vicinity of z -- zl is called 
the critical layer. 

We divide the z axis into five zones (Fig. 1). In zones 1 (z << q )  and 2 (z >> Zl), we construct 
an "external" representation of the field based on approximation (7) [below, the factor exp ( - i w t  4, i kx )  is 
omitted]: 

Here (I)(1)(z) is a solution of Eq. (6) tha t  satisfies the condition 

,~(t) "~ exp ( - i f  D ( z ' ) d z ' )  
z 

for z --+ ~ and Re D > 0. 
The coefficient A (1) is found from boundary  condition (2), and A (2) is determined below from the 

condition of matching of the fields in neighboring zones. In zone 3 (z ~ zl) we construct, on the basis of 
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Fig. 1 

system (3)-(6) with vn << 1 and Is(z)l << 1, an "internal" representation of the fields, which possesses the 
property of finiteness. 

Provided that  the condition 

v, >> ~-I 
"ykH (8) 

is valid for z --~ Zl, we have P'  ~ a2p ' according to (6). We represent Eq. (5) in the form 

dp' p' 
d--7~ + Ufi ~ ql(z,  ~ ) ,  

where 

If 

we obtain 

ql (Z, Un) =-- - z k a  o posv z + ~ + ao 2 d2v" dz  2 ~la o k v z + i~:ao 2 ~ +-~ dz  " 

For z - - ~ z l ,  Eq. (4) reduces to 

Iq, I << [P'~'-IH-1], (9) 

Z - - Z l ~ .  pl ~ A(3) exp ( - 
\ 

z :_21~. 
P '  ~ A(3)ao 2 exp ( ~ H  ] 

i dv '  z , i u l s  d2'v~r 
k dz  vz ~ k2 dzt', 2 -F q2, 

[ - -  d ]  ' i 1 swo + iu3s ~z  vz" 
where q2 =--- - ~ :  "yH aozo 

We restrict our consideration to the case in which the condition 
2 r tqs  d Vx] 

]q2[<< k2 dz  2 

is valid. In view of (12) and (13), we find from (3) 

[ d v x i v:] p , ~  PO iul8 2 , 

aos k 2 dz  2 l (H ' 

assuming additionally that 

According to (10), (14), and (15), we have 

and, for z --~ Z l ,  

"U ! 

-aTz~ " 

2 ! 
d v x .~ i aok2u~ lA(3 )po i (O)ex  p ( H  z - z l  
dz  2 ~-I-[ ] '  

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

295 



v~ ~ iaok2A (3) [2uipo(zl)]-l(z - -  Z1 )2 .  (16) 

By virtue of (12), we have 

v z ~ ikaoho[2zlPO(Zl)]-LA(3)(z - zl) 2. (17) 

Conditions (8), (9), (13), and (15) limit the area of applicability of the "internal" representation (10), 
i l l ) ,  (16), and (17): I z -  zll << 2H. The relat ion '  x ~ pl-1 is valid, where Ul << 1 and Ivx/vzl' ' ~ Ikzl/(u15o)]. 

and p'. Thus, a second undetermined For z -~ zl and pl r 0, there is no singularity in the fields of v x 
parameter A (3) appears. 

To s tudy  the fields in "intermediate" zones 4 and 5, we introduce a new dimensionless variable y -_- 
(z - z l ) /#(ul )  such that  #(Ul) --* 0 as P'l ---~ 0;  y ~ 1; #Ul t --~ c~. 

The field f ( y ,  #) can be expanded as 

f (Y ,# )  ~ "--i/--I(Y) § fo(Y) + #fl(Y) + . . . ,  ~(Ul) --* O, Ul ~ O. 

Equation (6), in view of (3) and (4), becomes 

ik# 2 dy - - - i  + r + 5 # d-~y - aoPo # -~1 y - zv2 v~: - ikz---~ v=. (18) 

U' Equation (4) relates v~(y, It) and '  z(y, #): 

i dr'. i 
"v~ k ,  d~ - "/kH viI1 + O(#)]. (19) 

With account of (3) and (19), we obtain the relation 

p, = ipo(zl)z l (~/-  1) v,z[ 1 + O(#)]. (20) 
aohok H ~f #y 

From (18) and (19), we find the dependence P'(v~): 

P' = [~5 ~rl k-2 d3"J'dy a" iaoPo(zl)5Okzl Y ~dv~ + ipo(zl)WOkzo vt:] [1 + O(#)]. (21) 

' p ,  Thus, we obtained relations (19)-(21) that  permit determination of v~, p', and with accuracy to 
0(#),  provided that  the function v': is known. Equation (6) reduces to 

dP'  
= g#p'[1 + O(#)], (22) 

dy 

and in view of (20)-(22), we have a fourth-order equation for vtz(y, #). For , (u l )  = zmu~/3 (rn = 4 for zone 4 
and m = 5 for zone 5), the function v ~. is independent of the parameter #: 

d4v~(y) iBlm)y d2v~(y) iB~m) dye(y) iB(m)y-lv ' .(y)  ~ O. (23) 
dy :~ dy 2 dy 

Here BI m) = (f0k2Zmzl3 --1, B~m) = B~m)(1-52) ,  and B(3"n) = ('7 - 1)k2zamzl/(726oU2). 
In zones 4 and 5, we have 

4 

(v,)(m) V" (24) 

where F (m) (n = 1, 2, 3, and 4; m = 4 and 5) are the linearly independent solutions of Eq. (23). 

Expression (24) includes 10 arbitrary parameters C([ n) and Zm (n = 1, 2, 3, and 4; m = 4 and 5). The 
intermediate representations in zones 4 and 5 are 

 0(y) + . . . ,  

i d~o , ! 

v x ~ #-1~-1(y)  -b r § #'~I(Y) §  '~-1 -- 
k d y '  
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p ' ~ # - l f - l ( y ) + f O ( y ) + p f l ( y ) + . . . ,  f - I  = 
ipo(zl)kZl(7 - 1) F0(Y) 

aodokH7 y 

P'  o(y) + #,I,,(y) + + . . . ,  o, , :  o, 

aoPo(z:) dap0 ittpo(z:)5o d~o ipo(z:)wo 
~o - k3z3 dy 3 kZl Y ~ + kzo ~o. 

Matching of the fields of v x,' v':, p' and P '  is performed simultaneously at four levels, z(:), z (2), z (3), and z (4) 
(see Fig. i),  with allowance for the first terms of the series, ~0, ~-1, f - l ,  and (I)0. Here, we have 16 equation 
in 16 parameters: z ('~) (n = 1, . . .  ,4), z (m) (m = 4, 5), C(~ ), A (2), and A (3). Derivatives can be discontinuous 
at matching points. 

' and Thus, making allowance for dissipation leads to elimination of infinite values of the fields of v x 

p' at z = z: [see (14), (16), and (17)]. The use of "internal" and "external" series allows a continuous 

representation of the fields of v~, v~. pl, and P' to be constructed. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-05- 

64723). 
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